
ISRAEL JOURNAL OF MATHEMATICS, Vol. 56, No. 2, 1986 

U N I T A R Y  D I L A T I O N S  
A N D  THE C* A L G E B R A  2 

BY 

PALLE E. T. JORGENSEN 
Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA 

ABSTRACT 

Let H be an infinite-dimensional separable Hilbert space, and let S = 
(S0) E B (H) @ Ms be a unitary 2 x 2 matrix with operator entries. We study the 
C*-algebra generated by the operators S,,, and show that the study of unitary 
dilations of isometries T in H reduces to the special case where S ,  = T, and 
Szl = 0. We use C*-algebraic techniques to obtain detailed results about the set 
of all unitary dilations of T. 

(1) 

(2) 

(3) 

for i #  j, and 

(4) 

§1. Introduction 

We study the C*-algebra generated by a pair of operators S~, $2 on an 

infinite-dimensional separable Hilbert space H, satisfying 

STS~ = P, 

S*S2 = 1, 

s*s  =0, 

S I S ~  "Jr- $25~ = 1 

where P is an arbitrary but fixed projection, and 1 denotes the identity operator 

in H. It will further be assumed that P is the defect projection of a third operator 

T, which will be assumed isometric but nonunitary. Hence P = 1 - TT* > 0 and 

T ' T =  1. 

For the Cuntz algebra ~7,, [Cu 1], the axioms are 

S*,Sj = &jl and XS, S* =1. 
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It follows that the only modification in the case n = 2 is the relation S'~ $1 = P < 

1, which replaces S*S~ = 1. 

Our work is motivated in part by a desire to understand the symmetries of a 

class of C*-algebras which is related to the Cuntz algebras but different. 

Secondly, we show a direct connection between dilation theory and the 

C*-algebra ~2. 

The symmetries of ~ have been studied in recent papers [BEG J, CE, Vo] 

where it is shown that the Lie group U(1, n) plays a central role. 

The above problem is a special case of the following one: 

Let S = (S~)~ B ( H ) @  M2 be a 2 x 2 matrix of operators, S~j E B ( H ) ,  and 

assume that S is unitary, i.e., unitary as an operator on H O H. What can be said 

about the C*-algebra generated by the entries? 

For given 

S = ( & )  @ B ( H ) @  M,.q, 

i.e., a p × q matrix with B(H)-entries, the conditions are 

S * S  = lq and SS* = lp, 

where lq, resp. lp, denotes the identity matrix in q, resp. p, dimensions. 

Moreover, the case p = l,  q = n reduces, as is easily seen, to the relations for 

Cuntz's ~Tn. The C*-algebra is well known to be simple then [Cu 1], but not so in 

general when p ~  1. 
The above-mentioned special case of the 2 x 2 operator matrices can be 

understood in terms of dilation theory. 
Consider a nonunitary isometry T on H, with P = 1 -  TT*, and assume that 

the matrix 

is unitary. Then it follows that A = 0, and the two operators $1, $2, defined by 

St = B* and $2 = C*, satisfy the relations (1) thru (4) above. The easy proof is 

left to the reader. 
In the next section, we shall consider unitary matrices of the form (5). We shall 

write 

(6) S = S*]  ' 

and it will be understood, implicitly, then that the entries S~ satisfy relations 

(1)-(4). 
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The contents of the paper are as follows: In §2, we consider the order 

properties on the set of all unitary dilations, °//r, of a given nonunitary isometry 

T. We show that an element S in q/r is minimal (in the sense of power dilations) 

if and only if the operator $2 (in formula (6) above) is a unilateral shift. 

In §3, we construct elements S = ($1, $2) in a//r satisfying S, ST < MIMT where 

T is a given nonunitary isometry in a Hilbert space H, and M E °//r is fixed at the 

outset. We show that the subset of such elements S in °//T is parametrized by the 

contraction operators V in H, satisfying V*PV=P, through $1 =M~V. 
Moreover, the equality SIS*= MtM* holds, if and only if the two operators 
VV* and P commute, and P <- VV*. 

In §4, we consider the C*-algebra C*(S~, $2) generated by the two operators 

$1 and $2 when it is given that S ={S1, S2}E q/r. If Q denotes the range 

projection of T, i.e., Q = TT*, we consider the ideal I in C*(SI, $2) generated 

by Q. We prove that the two cases: 

(i) I = C*(S,, $2) 

o r  

(ii) C*(S,,I $2) -~'2- 

can occur, showing that the quotient is either 0, or else infinite, more specifically, 
isomorphic to (~2. 

REMARK 1.1. Let T be a nonunitary isometry (as above) with P = 1 - TT*, 

and let {$1, $2} E q/r. In the very special case where P is equal to one of the two 

projections S,S*~, or $2S*, then the C*-algebra C*(SI, $2) is of the form ~?A. 

These algebras are studied in [CK] and [Ev 2]. The 2 × 2 matrix A is ('1 0), resp. 

(~ ~), if P = S~S*, resp. P = $2S*. Since the second matrix is irreducible, G,~ is 
simple in this case [CK]. 

(An example of the first case is S, = P and $2 = T. Then C*(S~, $2) = C*(T) is 
the nonsimple C*-algebra studied by Coburn [Co].) 

§2. Properties of the operators S, and $2 

The conditions (1)-(4) above, on the operator pair S,, $2, may be summarized 
as follows: 

P for i = j = l  
(1.1) S'S, = 0 for i # j  

1 for i= j  = 2  
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and 

2 

(1.2) ~, SiS* = 1. 
i = l  

The projection P is given by P = 1 - TT* where T is a fixed isometry in the 

Hilbert space H. When T is given, we shall denote by q/r the class of all operator 

pairs {$1, $2} satisfying the above conditions with P = 1 - TT*. We shall refer to 

{$1, $2} as a dilation pair for T. Recall that the matrix 

s = s u  

represents a unitary operator, $, on H ~ )H ,  and S is a unitary dilation of T. 

Moreover  H C H ~ ) H  is an invariant subspace for S, but not for S*. An easy 

calculation proves that S is a power dilation of T (cf. [SF]). In general, however, 

S may be different from the minimal power dilation of T. 

We have the following: 

THEOREM 2.1. The operator 

(T 
s * /  

on H ~) H is the minimal unitary power dilation of the given nonunitary isometry 

T on H if and only if $2 is a unilateral shift. (It is assumed that $1 and Sz satisfy 
(1.1)--(1.2) above.) 

The proof depends on the following: 

LEMMA 2.2. Let V be an isometry in a Hilbert space H, and let R (V) denote 
the closure of the range of V, i.e., the range of the projection VV*. Then V is a 
unilateral shift if and only if the only vector z in H which satisfies: 

( , )  

is z = O. 

PROOF. 

V*"z ~ R (V) for n = 0, 1 . . . .  

Suppose V is a unilateral shift [Ha], and that L C H is a wandering 

subspace which is generating, cf. [SF, p. 2], and [Ha]. We have 

H = ~ )  V"L. 

Assume that z E H decomposes: 
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z = (Zo, z , , . . . ) ,  z ,  ~ V " L ,  

and satisfies.condition (*) in Lemma 2.2. It follows that 

V * z  = ( z , ,  z 2 , . . . ) ,  

V*2z  = (z~, z3 . . . .  ), 

etc. We conclude that Zo = 0 since z E R ( V ) ,  z~ = 0 since V*z E R ( V ) ,  and, by 

induction, z, = 0 for all n _-> 0. 

This proves that z = 0. 

Assume, conversely, that only the vector z = 0 satisfies condition (*). Consider 

the Wold decomposition [SF, Theorem 1.1] for the isometry V: There is a 

decomposition H = H~ ~ / 4 2  which reduces V such that A = V [u, is a unilateral 

shift, and U = V [u2 is unitary on //2. 

Let z = (z~, z2) denote the components of z relative to the Wold decomposi- 

tion. We have: V*"z = ( A * " z , U  "z2)for n =0 ,1  . . . . .  Moreover, R ( V ) =  

R (A)O/- /2.  It follows that condition (*) is satisfied for all vectors of the form 

(0, z2). In particular, (*) holds for nonzero vectors only if/-/2 ~ 0, i.e., V is not a 

unilateral shift. 

PROOF OF THEOREM 2.1. In view of Lemma 2.2, it is enough to apply the 

condition in the lemma to the isometry $2. Let 

s = s * ]  ' 

and assume that y ~ z E H ~ H is orthogonal to S* ~ (H  ~]~ (0)) for all n _-> 0. 

Then, of course, y =0 ,  and an induction shows that STS*"z = 0  for all 

n = 0 , 1  . . . . .  Since the null space for ST is precisely R(S2), it follows that 

S~"z E R (S2 )  for n =>0, if and only if 0 O z  is orthogonal to the spaces 

S*" (H  G (0)) for all n => 0. Hence, the dilation S is a minimal power dilation of 

T precisely when the isometry S2 is a unilateral shift. 

COROLLARY 2.3. Let T be a unilateral shift in a Hilbert space H, and let 

P = 1 - TT*. Then ~ -  is parametrized by the group of all unitary operators V in H 

as follows: S~ = VP and $2 = VTV*.  

PROOF. Since T is a unilateral shift, (P, T ) E  °//r satisfies the condition in 

Theorem 2.1. Hence (o r Pr.) is a minimal unitary power dilation of T. Since such 

dilations are unique, up to unitary equivalence ([SF, Theorem 4.2]), the corollary 
follows. 
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For a given isometry T, we shall now discuss the set of all unitary dilations, ~//r. 

For an element {$1, $2} in q/r, the first operator, $1, is a partial isometry with 

initial space P and final space S~S*. (We shall adopt the convention of 

identifying projections, Q = Q* on H with the spaces Q H  = {x E H: Qx = x}.) 

DEFINITION 2.4. For two elements S = {S1, $2} and S ' =  {SI, S~}, in °//T, we 

shall say that S _-< S' if the graph of S* on its initial space is contained in that of 

S~*. Let the final projections of $1, resp. S~, be denoted Q, resp. Q', i.e., 

$1S1 = Then it follows that S < S' if and only if S i S * = Q ,  resp. ' '* Q'. = 

(2.1) Q = Q ' Q  

and 

(2.2) S',* O = S*. 

The following remark, which is immediate from 2.4, shows that the dilation 

pairs {S~, $2} display a certain rigidity. It also shows that =< is in fact an 

equivalence relation. 

REMARK 2.5. Let T be a non-unitary contraction, and let S and S' be two 

elements in q/r. If S _<- S', it follows that S, = SI. In this case, we say that S and 

S' are equivalent. The two isometries Sz and S~ may be different, but they have 

common final projection, viz. 1 -  S,S*. 

PROOF. Assume S _-< S'. Then SI* is one-to-one on its initial space. Its final 

space is P which is also the final space of S*. Thus, if S--_< S', we must have 

S~; = S', *. 

We now turn to a particular element in °tit which is canonically given in terms 

of T. 
The element {$1, $2}, given by S~ = P, and $2 = T, is called the canonical 

dilation pair, corresponding to the unitary dilation (~ ~.) for a given isometry T. 

Recall, P = 1 - 77"*. 

We shall need the following: 

PROPOSITION 2.6. Let T be a nonunitary isometry in H with infinite defect 

projection P. For an arbitrary element S =(S~, $2)~ °lbr, the following are 

equivalent: 

(3) P <= SIS*. 

(4) T'S2 is an isometry. 
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(5) 
There is an isometry V on H such that 

$2 = TV. 

Moreover, every isometry V gives rise to a dilation pair, S = (S~, TV),  satisfying 

(3). 

REMARK 2.7. Note that the first part of the proposition holds without the 

restriction dim P = ~. 

Before starting the proof we recall the following known lemma [Fu, Lemma 6] 

which will be used in the next two results. 

LEMMA 2.8. 

and assume 

Let E, F, and G be self-adjoint projections in a Hilbert space H, 

E F E  = G. 

Then it follows that the three projections mutually commute, and 

G = E ^ F .  

PROOF [Fu]. The operator  [E, F] = E F  - FE is a skew-adjoint and satisfies 
[E,F]3 = 0. 

PROOF OF PROPOSITION 2.6. Let S = {$1, $2} E ~ r  be given, and assume (3). 

Then $2S* = 1 - S~S* -< 1 - P = TT*, and it follows that there is a contraction 

operator  V on H satisfying S* = V ' T * .  Substitution of this into the matrix 

formula 

yields V* T* T V  = 1. Since T* T = 1, it follows that V* V = 1, proving (5). 

Assuming $2 = T V  for an isometry V, we get, upon multiplying by T* on the 

left, T'S2  = T * T V =  V, proving that T'S2 is isometric. 

If T'S2  is assumed to be an isometry, then 

which implies 

(T'S2)* T 'S2  = 1 

(&S*)(Tr*)(S2S*) = s2s*. 

It follows (Lemma 2.8) that the projections $2S* 

$2S* <= TT* which is equivalent to (3). 

and TT* commute,  and 
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Conversely, let V be an isometry such that (5) holds. Then, $2S'~ = 

T V V * T  *< - T T * = I - P ,  and therefore, 1-S2S~>=P.  Since P is assumed 

infinite-dimensional there is a partial isometry St with initial projection P and 

final projection 1 - $2S ~. It follows that {$1, TV}  ~ °//r, and this pair satisfies (3). 

The first part of Proposition 2.6 above has a dual: 

PROPOSmON 2.9. Let T be a nonunitary isometry in H with deficiency 

projection P. For an arbitrary S = {S~, $2} ~ °llr, the following are equivalent: 

S1SI =P.  (3') * < 

(4') S ~ T is an isometry. 

(5') There is an isometry W such that 

T =  S2W. 

PROOF. Note that {S~, $2} E O/r implies {ST, T} E ~/s~. Thus, Proposition 2.9 

follows readily from the first part of Proposition 2.6 (and Remark 2.7). 

REMARK 2.10. Let T be art isometry, and assume that P = 1 -  TT* is 

infinite-dimensional. Let V be a second isometry. 

Then there is a dilation pair {S~,S2}E °//r such that T =  S2V, i.e., the 

conditions in Proposition 2.9 are satisfied. 

PROOF. Both of the final projections, VV* and TT*, are infinite- 

dimensional. Hence, there is an isometric transformation of one onto the other. 

We shall extend this transformation, with doma in=  (VV*)H ,  to become an 

isometry defined on all of H and satisfying Sz V = T. When extended, it will be 

denoted $2. Since the complement of TT*, viz. P, is infinite-dimensional, $2 can 

be constructed in such a way that 1 - $2S* is still infinite-dimensional. Now let S~ 

be a partial isometry with P as initial space, and with 1 - $2S~ as final space. It is 

clear that the pair {SI, $2} lies in 6//r and that th~ conditions, $2 V = T and 

SIS* <-_ P, are both satisfied. 

COROLLARY 2.11. Let T be a given nonunitary isometry with defect projection 

P, and let {S~, $2} ~ ~T be given. Then the following are equivalent: 

(3") P = $1 S* 

and 

(4") S* T is unitary. 
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PROOF. The corollary follows when Propositions 2.6 and 2.9 are combined. If 

(3") holds then both of the operators T'S2 and S*T=(T*S2)* are isometric 

which means that T'S2 is unitary. The implications may be reversed, and the two 

propositions apply again to give the converse, (4") ~ (3"). 

COROLLARY 2.12. Let T be a nonunitary isometry on H with deficiency 

projection P. Let {St, $2} E 9/r be such that 

{P, T} =< {S, $2}. 

Then S, = P, and there is a unitary operator U on H such that 

$2 = TU. 

Conversely, if U is any unitary, then {P, TU} E ~r,  and 

{P, T} <= {P, TU} 

holds. 

PROOF. The proof is immediate form the propositions, and it is left to the 

reader. 

§3. Construction of different pairs $I, $2 

The standing assumption is that H is an infinite-dimensional separable Hilbert 

space, and T is a nonunitary isometry in H with P = 1 - TT*. If, in addition, S~ 

is a partial isometry with S* S~ = P, then, clearly, an isometry $2 exists, such that 

{Sj, $2} E °//T, if and only if I -  S~S* is infinite-dimensional. 

If, conversely, $2 is a given isometry, then a partial isometry $2 exists such that 

{$2, $2} E q/T if and only if the two projections 1 - $2S* and P have the same 

dimension. 

It follows that, if {S~, $2} E ~r ,  and if dim P < ~, then there is no {S~, S~'} E °//r 

such that 

or 

S~Sl < SxST 

t P~ SISI > S,S*. 

We will show in this section that the situation in less rigid if dim P = ~ and we 

shall classify the possibilities. 

When comparing two elements in °//r, we restrict attention to only the first of 

the two conditions, (2.1) and (2.2), in Definition 2.4. 
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THEOREM 3.1. Let T be a non-unitary isometry in H with P = 1 - TT*, and let 

M = {Mr, M2} E ~IT be given. 

(i) Let V be a contraction operator, i.e., V E B ( H ) ,  tlvll_-<l, satisfying 

V* P V  = P. Then there exists an isometry $2 such that the pair S = {M~,V, $2} is in 

°llr, and S~S* < MIM*. 

(ii) Conversely, for every S = {St, $2} E qlT satisfying 

(*) S,S* <= MtM*,  

there is a contraction V such that $1 = M~ V and V * P V  = P. 

(iii) Equality holds in (*), i.e., S~S* = MtM~,  if and only if the operators P and 

VV* commute, and P <= VV*; in fact, P ( V V * )  = P. 

PROOF. (i) Let M = {M~, M2} E q/~, and let V satisfy the assumptions. Define 

St = Mt V. Then 

S ' S t  = V*M*MI V = V * P V  = P. 

It follows that $1 is a partial isometry. In particular, SIS* is a projection, viz. the 

final projection of Sl. We have StST = Mt V V * M *  <= MtM* since VV* <= 1. 

Hence, 1 - S ~ S * > = I - M ~ M * = M 2 M  *. It follows that 1 - S ~ S *  is infinite- 
dimensional and, therefore, there is an isometry $2 with 1 - S ~ S *  as its final 

projection. We have proved that this pair {$1, $2} lies in q/r, and satisfies the 

inequality (*). 
(ii) If conversely {St, $2} E q/r, and (*) holds, then a contraction operator V 

exists such that S* = V ' M * .  We also have P = S*SI = V * M * M ~ V  = V*PV. 

This proves part (ii) of the theorem. 

(iii) Assume equality in (*) and substitute S~ = M~ V. We get 

M~M* = S~S* = MI VV*M*.  

Now multiply through with M~' on the left and M~ on the right in this formula. 

We get 

MT M~ = (M* M,)(  VV*) (M* MO. 

Since P = MTM~ this amounts to 

P = P( VV*)P. 

For the operator VV*, we have 

(t) 0 <- VV* <-_ 1. 
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Decompose the Hilbert space H relative to the projection P and its complement 

1 -  P. The matrix for VV* then takes the form 

For vectors z E H ,  we write x = P z  and (relative to the decomposition). 

y = (1 - P)z. 
Substitution of this into the estimates listed in (t) above leads to: 

O<-_llPxll2 + 2Re(x, Ly)+(Oy, y)<=llxll2 +llYll 2. 

Since Px = x, this reduces in turn to: 

- II x II 2 _-< 2 Re(x, Ly ) + (Oy, y ) < l[ Y II 2. 

For arbitrary vectors x, y as above, consider the two complex lines tx in PH 
(t E C), and then ty in the complement. The resulting elementary quadratic form 

estimates yield 

(x, L y ) = 0  and O<=(Qy, y)<-_llyllL 

In particular, L = 0 when L is regarded as an operator from ( 1 -  P)H to PH. 
The matrix for VV* reduces then to (e ~), and the conclusions listed in (iii) 

become obvious. 

The converse implication in (iii) is easy and is left to the reader. 

§4. A dichotomy for the C*-algebra C*(S~, $2) 

Let T be a nonunitary isometry in a separable infinite-dimensional Hilbert 

space H, and let S = {St, $2} @ 0//T, i.e., the matrix 

s*] 

is a unitary dilation of T. In this final section, we study the unital C*-algebra 9.1 

generated by the two partial isometries, SI and $2 in H, i.e., 91 = C*(S~, $2). 
Let P = I - T T * .  Since S*S,=P,  it follows that PE91,  and P I = I - P =  

TT* ~ 91. We consider the closed (two-sided) *-ideal in 91 generated by PC The 

ideal will be denoted I. 

T~EOREM 4.1. Let T be a nounitary isometry with defect projection P. If  the 
closed ideal I generated by P~ is proper, ie., I /91 ,  then 91/I is isomorphic to the 
Cuntz algebra G. 
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REMARK 4.2. It follows that there are only two possibilities for 9J/I: Either 
9J/I is trivial = 0, or else it is infinite, 9l/I---G2. Recall [Cu 1] that (~2 is an 
infinite, simple C*-algebra. 

Before turning to the proof, we list some cases where ~l/I is trivial, i.e., I = 9.1. 

The following implications hold: (1) ~ (2) ~ (3) ¢:~ (4), and (5) ~ (3), where: 

(1) S,S*<-_P and S * T ~ I ,  

(2) T E 9.1, 

(3) I = 9j, 

(4) SI E I or S2 ~ I, 

(5) S, ST >= P. 

PROOF OF THEOREM 4.1. Assume I #  9j, and let ~o: ~l ~ 9d/I be the quotient- 

mapping. Let U~ = ¢(Si), i =  1,2. We have 

! i = / ' = 1  
S*Sj = i#  j 

i = j  = 2  

and 

S~S*= l. 

When q~ is applied, the new relations 

U ~ = ~ j l  and ~ U ~ U * = I  

follow, where 1 is the identity in 9J/L It follows that both of the elements, UI and 

U2, are nonzero in 9J/L which means that neither Sx nor $2 lies i n / .  
Now we let ~2 denote a "copy" of the Cuntz algebra with generators tri, 

i = 1,2, satisfying o'~trj = ~ijl and Xtr~tr~ = 1. Recall [Cu 2] that ~2 is deter- 

mined, as a unital C*-algebra, up to isomorphism. It is simple and infinite. 

Using the universal property of ~72, we get a homomorphism $: ~2--~9j/I, 
satisfying $(o ' , )= U~#0, i = 1,2. Since the kernel, ker$ ,  is a closed ideal, 

ker ~ #  62, it follows that ~ is an isomorphism of ~2 onto its image. On the other 

hand, the two generators U~ and /-/2 lie in the range of ~b, and it follows that 

~b(~2) = 9~/L This concludes the proof of Theorem 4.1. 
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PROOF OF REMARK 4.2. Assume the two conditions listed under (1). Let 

V = S* T E 9.1. It follows from Proposition 2.9 that V is an isometry satisfying 

T = $2 V. Both $2 and V are in 92, and therefore T E 92, which proves (2). 

Now, assume (2). Since TT* = p l  is the range projection of T, it follows that 

T ' P i T  = T * T  = 1. 

Since T E 92, this means that 1 is in the ideal I generated by p l .  Hence, I = 92. 

Clearly ( 3 ) ~  (4), and it follows from the proof of Theorem 4.1 that the 

converse implication is also valid. That is, if I ~  92, then $1 ~ I and $2 ~ / .  

We finally assume condition (5), i.e., S~S~  -> P = 1 - TT*. It follows that 

S ~ P ~ S 2  = 1. 

This is because p l  contains the final projection of $2 when (5) is assumed. 

Hence, 1 E I and I = 9.1, which proves (3), and concludes the proof of Remark 

4.2. 

REMARK 4.3. Recently, other results on G have appeared. They are [BI, 

LTW], and came to our attention after the completion of this paper. In [LTW], a 

pure state extension to G is constructed of a certain non-hyperfinite II, factor 

state on the Choi subalgebra. In [B1], it is proved that every non-type-I 

C*-algebra contains a subalgebra which has ~72 as a quotient. It would be 
interesting to study connections to dilation theory. 
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